References

National Diabetes Statistics Report 2014. Estimates of diabetes and its burden in the epidemiologic estimation methods. 2009–2012. 2014. http://1.usa.gov/1mDQj2g (accessed 9 June 2016)

Wild S., Roglic G., Green A. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004; 27:(5)1047-1053

National Diabetes Fact Sheet. Fast facts on diabetes. 2011. http://1.usa.gov/1tcPqZd (accessed 9 June 2016)

Economic costs of diabetes in the U.S. in 2012.: Diabetes Care; 2013 https://doi.org/10.2337/dc12-2625

Flyvbjerg A. Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily. Nat Rev Endocrinol. 2010; 6:(2)94-101

Goldberg R.B. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab. 2009; 94:(9)3171-3182

Dronavalli S., Duka I., Bakris G.L. The pathogenesis of diabetic nephropathy. Nat Clin Pr Endocrinol Metab. 2008; (4)444-452

Prompers L., Schaper N., Apelqvist J. Prediction of outcome in individuals with diabetic foot ulcers: focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study. Diabetologia. 2008; 51:(5)747-755

Brem H., Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest. 2007; 117:(5)1219-1222

Mathers C.D., Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006; 3:(11)2011-2030

Harrington C., Zagari M.J., Corea J., Klitenic J. A cost analysis of diabetic lower-extremity ulcers. Diabetes Care. 2000; (23)1333-1338

Apelqvist J. Wound healing in diabetes. Outcome and costs. Clin Podiatr Med Surg. 1998; 15:(1)21-39

Christman A.L., Selvin E., Margolis D.J. Hemoglobin a1c predicts healing rate in diabetic wounds. J. Invest. Dermatol. 2011; 131:(10)2121-2127

Gordois A., Scuffham P., Shearer A. The health care costs of diabetic peripheral neuropathy in the U.S. Diabetes Care. 2003; 26:1790-1795

Casqueiro J., Casqueiro J., Alves C. Infections in patients with diabetes mellitus: A review of pathogenesis. Indian J Endocrinol Metab. 2012; 16:S27-S36

Geerlings S.E., Hoepelman A.I. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 1999; 26:(3–4)259-265

Adler A.I., Boyko E.J., Ahroni J.H., Smith D.G. Lower-extremity amputation in diabetes. The independent effects of peripheral vascular disease, sensory neuropathy, and foot ulcers. Diabetes Care. 1999; 22:(7)1029-1035

Pecoraro R.E., Reiber G.E., Burgess E.M. Pathways to diabetic limb amputation. Basis for prevention. Diabetes Care. 1990; 13:(5)513-521

Nather A., Bee C.S., Huak C.Y. Epidemiology of diabetic foot problems and predictive factors for limb loss. J Diabetes Complications. 2008; (22)77-82

Diegelmann R.F., Evans M.C. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004; 9:283-289

Dovi J.V., Szpaderska A.M., DiPietro L.A. Neutrophil function in the healing wound: adding insult to injury?. Thromb Haemost. 2004; 92:275-280

Park J.E., Barbul A. Understanding the role of immune regulation in wound healing. Am J Surg. 2004; 187:(5A)11S-16S

Martin C.W., Muir I.F. The role of lymphocytes in wound healing. Br J Plast Surg. 1990; 43:(6)655-662

Hopf H.W., Rollins M.D. Wounds: an overview of the role of oxygen. Antioxid. Redox Signal. 2007; 9:(8)1183-1192

Hart J. Inflammation. 1: Its role in the healing of acute wounds. J Wound Care. 2002; 11:(6)205-209

Friedl P., Weigelin B. Interstitial leukocyte migration and immune function. Nat Immunol. 2008; 9:(9)960-969

Eming S.A., Krieg T., Davidson J.M. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol. 2007; 127:(3)514-525

Gallagher K.A., Liu Z.J., Xiao M. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest. 2007; 117:(5)1249-1259

Ross R., Benditt E.P. Wound healing and collagen formation. I. Sequential changes in components of guinea pig skin wounds observed in the electron microscope. J Biophys Biochem Cytol. 1961; 11:677-700

Leibovich S.J., Ross R. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol. 1975; 78:(1)71-100

Schwentker A., Vodovotz Y., Weller R., Billiar T.R. Nitric oxide and wound repair: role of cytokines?. Nitric Oxide. 2002; 7:(1)1-10

Lam F.W., Burns A.R., Smith C.W., Rumbaut R.E. Platelets enhance neutrophil transendothelial migration via P-selectin glycoprotein ligand-1. Am J Physiol Heart Circ Physiol. 2011; 300:(2)H468-H475

Mowat A.G., Baum J. Chemotaxis of polymorphonuclear leukocytes from patients with rheumatoid arthritis. J Clin Invest. 1971; 50:(12)2541-2549

Gushiken F.C., Han H., Li J. Abnormal platelet function in C3-deficient mice. J. Thromb Haemost. 2009; 7:(5)865-870

Middleton J., Patterson A.M., Gardner L. Leukocyte extravasation: Chemokine transport and presentation by the endothelium. Blood. 2002; 100:(12)3853-3860

Graham D.B., Robertson C.M., Bautista J. Neutrophil-mediated oxidative burst and host defense are controlled by a Vav-PLCgamma2 signaling axis in mice. J Clin Invest. 2007; 117:(11)3445-3452

Ehrlich H.P., Hunt T.K. Effects of cortisone and vitamin A on wound healing. Ann Surg. 1968; 167:(3)324-328

Fishel R., Barbul A., Wasserkrug H.L. Cyclosporine A impairs wound healing in rats. J Surg Res. 1983; 34:(6)572-575

Barbul A., Rettura G., Levenson S.M., Seifter E. Wound healing and thymotropic effects of arginine: a pituitary mechanism of action. Am J Clin Nutr. 1983; 37:(5)786-794

Delamaire M., Maugendre D., Moreno M. Impaired leucocyte functions in diabetic patients. Diabet Med. 1997; 14:(1)29-34

Collison K.S., Parhar R.S., Saleh S.S. RAGE-mediated neutrophil dysfunction is evoked by advanced glycation end products (AGEs). J Leukoc Biol. 2002; 71:(3)433-444

Vardakas K.Z., Siempos I.I., Falagas M.E. Diabetes mellitus as a risk factor for nosocomial pneumonia and associated mortality. Diabet Med. 2007; 24:(10)1168-1171

Saiepour D., Sehlin J., Oldenborg P.A. Insulin inhibits phagocytosis in normal human neutrophils via PKCalpha/beta-dependent priming of F-actin assembly. Inflamm Res. 2006; 55:(3)85-91

Perner A., Nielsen S.E., Rask-Madsen J. High glucose impairs superoxide production from isolated blood neutrophils. Intensive Care Med. 2003; 29:(4)642-645

Alba-Loureiro T.C., Munhoz C.D., Martins J.O. Neutrophil function and metabolism in individuals with diabetes mellitus. Braz J Med Biol Res. 2007; 40:(8)1037-1044

Bjarnsholt T., Kirketerp-Møller K., Jensen PØ. Why chronic wounds will not heal: A novel hypothesis. Wound Repair Regen. 2008; 16:(1)2-10

Wetzler C., Kampfer H., Stallmeyer B. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: Prolonged persistence of neutrophils and macrophages during the late phase of repair. J Invest Dermatol. 2000; 115:(2)245-253

Mirza R.E., Fang M.M., Ennis W.J., Koh T.J. Blocking interleukin-1b induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes. 2013; 62:(7)2579-2587

Mirza R., Koh T.J. Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice. Cytokine. 2011; 56:(2)256-264

Mirza R., DiPietro L.A., Koh T.J. Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol. 2009; 175:(6)2454-2462

Khanna S., Biswas S., Shang Y. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One. 2010; 5:(3)

Omori K., Ohira T., Uchida Y. Priming of neutrophil oxidative burst in diabetes requires preassembly of the NADPH oxidase. J Leukoc Biol. 2008; 84:(1)292-301

Tong P.C., Lee K.F., So W.Y. White blood cell count is associated with macro- and microvascular complications in chinese patients with type 2 diabetes. Diabetes Care. 2004; 27:(1)216-222

Linderkamp O., Ruef P., Zilow E.P., Hoffmann G.F. Impaired deformability of erythrocytes and neutrophils in children with newly diagnosed insulin-dependent diabetes mellitus. Diabetologia. 1999; 42:(7)865-869

Chibber R., Ben-Mahmud B.M., Chibber S., Kohner E.M. Leukocytes in diabetic retinopathy. Curr Diabetes Rev. 2007; 3:(1)3-14

Karadayi K., Top C., Gülecek O. The relationship between soluble L-selectin and the development of diabetic retinopathy. Ocul Immunol Inflamm. 2003; 11:(2)123-129

Galkowska H., Wojewodzka U., Olszewski W.L. Low recruitment of immune cells with increased expression of endothelial adhesion molecules in margins of the chronic diabetic foot ulcers. Wound Repair Regen. 2005; 13:(10, 3)248-254

Loots M.A.M., Lamme E.N., Zeegelaar J. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Invest Dermatol. 1998; 111:(5)850-857

Giubilato S., Liuzzo G., Brugaletta S. Expansion of CD4+CD28null T-lymphocytes in diabetic patients: exploring new pathogenetic mechanisms of increased cardiovascular risk in diabetes mellitus. Eur Heart J. 2011; 32:1214-1226

Nakajima T., Schulte S., Warrington K.J. T-cellmediated lysis of endothelial cells in acute coronary syndromes. Circulation. 2002; 105:570-575

Liuzzo G., Kopecky S.L., Frye R.L. Perturbation of the T-cell repertoire in patients with unstable angina. Circulation. 1999; 100:(21)2135-2139

Liuzzo G., Vallejo A.N., Kopecky S.L. Molecular fingerprint of interferongamma signaling in unstable angina. Circulation. 2001; 103:(11)1509-1514

Pryshchep S., Sato K., Goronzy J. J., Weyand C.M. T cell recognition and killing of vascular smooth muscle cells in acute coronary syndrome. Circ Res. 2006; 98:(9)1168-1176

Sato K., Niessner A., Kopecky S.L. TRAIL-expressing T cells induce apoptosis of vascular smooth muscle cells in the atherosclerotic plaque. J Exp Med. 2006; 203:(1)239-250

Liuzzo G., Biasucci L.M., Trotta G. Unusual CD4+CD28null T Lymphocytes and Recurrence of Acute Coronary Events. J Am Coll Cardiol. 2007; 50:(15)1450-1458

Han S., Liu P., Zhang W. The opposite-direction modulation of CD4+CD25+ Tregs and T helper 1 cells in acute coronary syndromes. Clin Immunol. 2007; 124:(1)90-97

Mor A., Luboshits G., Planer D. Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes. Eur Hear J. 2006; 27:2530-2537

Zhen Y., Sun L., Liu H. Alterations of peripheral CD4+CD25+Foxp3+ T regulatory cells in mice with STZ-induced diabetes. Cell Mo. Immunol. 2001; 9:(1)75-85

Taylor K.R., Mills R.E., Costanzo A.E., Jameson J.M. T cells are reduced and rendered unresponsive by hyperglycemia and chronic TNFalpha in mouse models of obesity and metabolic disease. PLoS One. 2010; 5:(7)

Toulon A., Breton L., Taylor K.R. A role for human skin-resident T cells in wound healing. J Exp Med. 2009; 206:(4)743-750

Loots M.A.M., Lamme E.N., Mekkes J.R. Cultured fibroblasts from chronic diabetic wounds on the lower extremity (non-insulindependent diabetes mellitus) show disturbed proliferation. Arch Dermatol Res. 1999; 291:(2–3)93-99

Lerman O.Z., Galiano R.D., Armour M. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am J Pathol. 2003; 162:(1)303-312

Spanheimer R.G., Umpierrez G.E., Stumpf V. Decreased collagen production in diabetic rats. Diabetes. 1988; 37:(4)371-376

Thangarajah H., Yao D., Chang E.I. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci U S A. 2009; 106:(32)13505-13510

Saaristo A., Tammela T., Farkkila A. Vascular endothelial growth factor-C accelerates diabetic wound healing. Am J Pathol. 2006; 169:(3)1080-1087

Asai J., Takenaka H., Kusano K.F. Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation. 2006; 113:(20)2413-2424

Botusan I.R., Sunkari V.G., Savu O. Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci U S A. 2008; 105:(49)19426-19431

Geerlings S.E., Brouwer E.C., Van Kessel K.C. Cytokine secretion is impaired in women with diabetes mellitus. Eur J Clin Invest. 2000; 30:995-1001

Peleg A.Y., Weerarathna T., McCarthy J.S., Davis T.M. Common infections in diabetes: pathogenesis, management and relationship to glycaemic control. Diabetes Metab Res Rev. 2007; 23:(1)3-13

Goova M.T., Li J., Kislinger T. Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice. Am J Pathol. 2001; 159:(2)513-525

Peleg A.Y., Weerarathna T., McCarthy J.S., Davis T.M. Common infections in diabetes: Pathogenesis, management and relationship to glycaemic control. Diabetes Metab Res Rev. 2007; 23:(1)3-13

Marques-Vidal P., Bastardot F., von Känel R. Association between circulating cytokine levels, diabetes and insulin resistance in a population-based sample (CoLaus study). Clin Endocrinol (Oxf). 2013; 78:(2)232-241

Price C.L., Hassi H.O., English N.R. Methylglyoxal modulates immune responses: Relevance to diabetes. J Cell Mol Med. 2010; 14:(6B)1806-1815

Saiepour D., Sehlin J., Oldenborg P.A. Hyperglycemia-induced protein kinase C activation inhibits phagocytosis of c3b- and immunoglobulin g–opsonized yeast particles in normal human neutrophils. Exp Diabesity Res. 2003; 4:(2)125-132

Stoeckle M., Kaech C., Trampuz A., Zimmerli W. The role of diabetes mellitus in patients with bloodstream infections. Swiss Med Wkly. 2008; 138:512-519

La Bonte L.R., Davis-Gorman G., Stahl G.L., McDonagh P.F. Complement inhibition reduces injury in the type 2 diabetic heart following ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2008; 294:(3)H1282-H1290

Bjerre M., Kistorp C., Hansen T.K. Complement activation, endothelial dysfunction, insulin resistance and chronic heart failure. Scand Cardiovasc J. 2010; 44:(5)260-266

Heemskerk J.W., Bevers E.M., Lindhout T. Platelet activation and blood coagulation. Thromb Haemost. 2002; 88:(2)186-193

Vinik A.I., Erbas T., Park T.S. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001; 24:(8)1476-1485

Gryglewski R.J., Botting R.M., Vane J.R. Mediators produced by the endothelial cell. Hypertension. 1998; 12:(6)530-548

El Haouari M., Rosado J.A. Platelet signalling abnormalities in patients with type 2 diabetes mellitus: a review. Blood Cells Mol Dis. 2008; 41:(1)119-23

Akai T., Naka K., Okuda K. Decreased sensitivity of platelets to prostacyclin in patients with diabetes mellitus. Horm Metab Res. 1983; 15:(11)523-526

Inui Y., Suehiro T., Kumon Y., Hashimoto K. Platelet volume and urinary prostanoid metabolites in non-insulin-dependent diabetes mellitus. J Atheroscler Thromb. 1994; 1:108-112

Halushka P.V., Rogers R.C., Loadholt C.B., Colwell J.A. Increased platelet thromboxane synthesis in diabetes mellitus. J Lab Clin Med. 1981; 97:(1)87-96

Halushka P.V., Lurie D., Colwell J.A. Increased synthesis of prostaglandin-E-like material by platelets from patients with diabetes mellitus. N Engl J Med. 1977; 297:(24)1306-1310

Brunner D., Klinger J., Weisbort J. Thromboxane, prostacyclin, beta-thromboglobin, and diabetes mellitus. Clin Ther. 1984; 6:(5)636-642

Pietramaggiori G., Scherer S.S., Mathews J.C. Healing modulation induced by freeze-dried platelet-rich plasma and micronized allogenic dermis in a diabetic wound model. Wound Repair Regen. 2008; 16:(2)218-225

Miyamoto M.I., Djabali K., Gordon L.B. Atherosclerosis in ancient humans, accelerated aging syndromes and normal aging. Glob Heart. 2014; 9:(2)211-218

Goldin A., Beckman J.A., Schmidt A.M., Creager M.A. Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation. 2006; 114:597-605

Kilhovd B.K., Berg T.J., Birkeland K.I. Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease. Diabetes Care. 1999; 22:(9)1543-1548

Peppa M., Vlassara H. Advanced glycation end products and diabetic complications: a general overview. Hormones (Athens). 2005; 4:(1)28-37

Singh R., Barden A., Mori T., Beilin L. Advanced glycation end-products: A review. Diabetologia. 2001; 44:(2)129-146

Basta G., Schmidt A.M., De Caterina R. Advanced glycation end products and vascular inflammation: Implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004; 63:(4)582-592

Peppa M., Stavroulakis P., Raptis S.A. Advanced glycoxidation products and impaired diabetic wound healing. Wound Repair Regen. 2009; 17:(4)461-472

Huebschmann A.G., Regensteiner J.G., Vlassara H., Reusch J.E. Diabetes and advanced glycoxidation end products. Diabetes Care. 2006; 29:(6)1420-1432

Peppa M., Brem H., Ehrlich P. Adverse effects of dietary glycotoxins on wound healing in genetically diabetic mice. Diabetes. 2003; 52:(11)2805-2813

Liu B.F., Miyata S., Kojima H. Low phagocytic activity of resident peritoneal macrophages in diabetic mice: Relevance to the formation of advanced glycation end products. Diabetes. 1999; 48:(10)2074-2082

Nakamura Y., Horii Y., Nishino T. Immuno-histochemical localization of advanced glycosylation end products in coronary atheroma and cardiac tissue in diabetes mellitus. Am J Pathol. 1993; 143:(6)1649-1656

Jinnouchi Y., Sano H., Nagai R. Glycolaldehyde-modified low density lipoprotein leads macrophages to foam cells via the macrophage scavenger receptor. J Biochem. 1998; 123:(6)1208-1217

Sluimer J.C., Daemen M.J. Novel concepts in atherogenesis: Angiogenesis and hypoxia in atherosclerosis. J Pathol. 2009; 218:(1)7-29

Hultén L.M., Levin M. The role of hypoxia in atherosclerosis. Curr Opin Lipidol. 2009; 20:(5)409-414

Niu Y.W., Miao M.Y., Dong W. [Article in Chinese] [Effects of advanced glycation end products and its receptor on oxidative stress in diabetic wounds]. Zhonghua Shao Shang Za Zhi. 2012; 28:(1)32-35

Ahmed N., Thornalley P.J. Advanced glycation endproducts: what is their relevance to diabetic complications?. Diabetes Obes Metab. 2007; 9:(3)233-245

Ahmed N. Advanced glycation endproducts - Role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005; 67:(1)3-21

Sims T.J., Rasmussen L.M., Oxlund H., Bailey A.J. The role of glycation cross-links in diabetic vascular stiffening. Diabetologia. 1996; 39:(8)946-951

Witte M.B., Kiyama T., Barbul A. Nitric oxide enhances experimental wound healing in diabetes. Br J Surg. 2002; 89:(12)1594-1601

Bierhaus A., Schiekofer S., Schwaninger M. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes. 2001; 50:(12)2792-2808

Esposito C., Gerlach H., Brett J. Endothelial receptor-mediated binding of glucose-modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J Exp Med. 1989; 170:(4)1387-1407

Bierhaus A., Illmer T., Kasper M. Advanced glycation end product (AGE)-mediated induction of tissue factor in cultured endothelial cells is dependent on RAGE. Circulation. 1997; 96:(7)2262-2271

Chuah Y.K., Basir R., Talib H. Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int J Inflam. 2013; https://doi.org/10.1155/2013/403460

Immune and vascular dysfunction in diabetic wound healing

02 July 2017
Volume 1 · Issue 3

Abstract

The diminished capacity for wound healing in patients with diabetes contributes to morbidity through ulceration and recurrent infections, loss of function and decreased workplace productivity, increased hospitalisation rates, and rising health-care costs. These are due to diabetes' effects on signalling molecules, cellular cascades, different cell populations, and the vasculature. The function of multiple immune system components including cellular response, blood factors, and vascular tone are all negatively impacted by diabetes. The purpose of this paper is to review the current understanding of immune and vascular dysfunction contributing to impaired wound healing mechanisms in the diabetic population. Normal wound healing mechanisms are reviewed followed by diabetic aberrations to immune and inflammatory function and atherogenesis and angiopathy.

Diabetes is a debilitating and highly prevalent disease, currently affecting over 29 million Americans,1 with this figure projected to double by 2030.2 Diabetes remains the 7th leading cause of death in the United States,3 and contributes to significant economic loss—$245 billion lost in 2012 to both direct medical costs and reduced productivity.1 Patients with diabetes suffer higher health-care costs, with average medical expenditures amounting to 2.3 times that of the rest of the population.4 Complications from diabetes contribute to significant morbidity and associated harmful conditions such as hypertension, dyslipidaemia, heart attack and stroke, and damage individual organ systems leading to cardiovascular disease, retinopathy, neuropathy, and nephropathy.1,3,5,6 It is the leading cause of kidney failure necessitating chronic dialysis.1,3,7,8

Register now to continue reading

Thank you for visiting Wound Central and reading some of our peer-reviewed resources for wound care professionals. To read more, please register today. You’ll enjoy the following great benefits:

What's included

  • Access to clinical or professional articles

  • New content and clinical updates each month