Monassier JP. Reperfusion injury in acute myocardial infarction: from bench to cath lab. Part I: Basic considerations. Arch Cardiovasc Dis. 2008; 101:(7-8)491-500
Pagliaro P, Penna C. Cardiac postconditioning. Antioxid Redox Signal. 2011; 14:(5)777-779
Deftereos S, Angelidis C, Bouras G Innate immune inflammatory response in the acutely ischemic myocardium. Med Chem. 2014; 10:(7)653-662
Martindale JJ, Metzger JM. Uncoupling of increased cellular oxidative stress and myocardial ischemia reperfusion injury by directed sarcolemma stabilization.
J Mol Cell Cardiol. 2014; 67:26-37
https://doi.org/10.1016/j.yjmcc.2013.12.008
Markham BE, Kernodle S, Nemzek J Chronic dosing with membrane sealant poloxamer 188 NF improve respiratory dysfunction in dystrophic Mdx and Mdx/Utrophoin-/-mice.
PLoS One. 2015; 10:(8)
https://doi.org/10.1371/journal.pone.0134832
Townsend D, Turner I, Yasuda S Chronic administration of membrane sealant prevents severe cardiac injury and ventricular dilatation in dystrophic dogs.
J Clin Invest. 2010; 120:(4)1140-1150
https://doi.org/10.1172/JCI41329
Spurney CF, Guerron AD, Yu Q, Sali A Membrane sealant poloxamer P188 protects against isoproterenol induced cardiomyopathy in dystrophin deficient mice.
BMC Cardiovasc Disord. 2011; 11
https://doi.org/10.1186/1471-2261-11-20
Kahles T, Brandes RP. Which NADPH oxidase isoform is relevant for ischemic stroke? The case for nox 2.
Antioxid Redox Signal. 2013; 18:(12)1400-1417
https://doi.org/10.1089/ars.2012.4721
Gu JH, Ge JB, Li M Poloxamer 188 protects neurons against ischemia/reperfusion injury through preserving integrity of cell membranes and blood brain barrier.
PLoS One. 2013; 8:(4)
https://doi.org/10.1371/journal.pone.0061641
Mbye LH, Keles E, Tao L Kollidon VA64, a membrane-resealing agent, reduces histopathology and improves functional outcome after controlled cortical impact in mice.
J Cereb Blood Flow Metab. 2012; 32:(3)515-524
https://doi.org/10.1038/jcbfm.2011.158
Bao HJ, Wang T, Zhang MY Poloxamer-188 attenuates TBI-induced bloodbrain barrier damage leading to decreased brain edema and reduced cellular death.
Neurochem Res. 2012; 37:(12)2856-2867
https://doi.org/10.1007/s11064-012-0880-4
Borgens RB, Bohnert D, Duerstock B Subcutaneous tri-block copolymer produces recovery from spinal cord injury.
J Neurosci Res. 2004; 76:(1)141-154
https://doi.org/10.1002/jnr.20053
Shi R. Polyethylene glycol repairs membrane damage and enhances functional recovery: a tissue engineering approach to spinal cord injury. Neurosci Bull. 2013; 29:(4)460-466
Borgens RB. Cellular engineering: molecular repair of membranes to rescue cells of the damaged nervous system. Neurosurgery. 2001; 49:(2)370-378
Bor MV, Durmuş O, Bilgihan A The beneficial effect of 2’-deoxycoformycin in renal ischemia-reperfusion is mediated both by preservation of tissue ATP and inhibition of lipid peroxidation. Int J Clin Lab Res. 1999; 29:(2)75-79
Lee RC. Injury by electrical forces: pathophysiology, manifestations, and therapy. Curr Probl Surg. 1997; 34:(9)677-764
Collins JM, Despa F, Lee RC. Structural and functional recovery of electropermeabilized skeletal muscle in-vivo after treatment with surfactant poloxamer 188.
Biochim Biophys Acta. 2007; 1768:(5)1238-1246
https://doi.org/10.1016/j.bbamem.2007.01.012
Abreu-Blanco MT, Verboon JM, Parkhurst SM. Single cell wound repair: Dealing with life's little traumas. Bioarchitecture. 2011; 1:(3)114-121
McNeil PL, Steinhardt RA. Loss, restoration, and maintenance of plasma membrane integrity. J Cell Biol. 1997; 137:(1)1-4
Lee RC. Cytoprotection by stabilization of cell membranes. Ann N Y Acad Sci. 2002; 961:271-275
Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol. 2008; 8:(4)279-289
Armstrong DG, Jude EB. The role of matrix metalloproteinases in wound healing. J Am Podiatr Med Assoc. 2002; 92:(1)12-18
Maskarinec SA, Wu G, Lee KY. Membrane sealing by polymers. Ann N Y Acad Sci. 2005; 1066:310-320
Lee RC, River LP, Pan FS Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc Natl Acad Sci U S A. 1992; 89:(10)4524-4528
Hannig J, Lee RC. Structural changes in cell membranes after ionizing electromagnetic field exposure. IEEE Trans Plasma Sci. 2000; 28:97-101
Houang EM, Haman KJ, Filareto A Membranestabilizing copolymers confer marked protection to dystrophic skeletal muscle in vivo. Mol Ther Methods Clin Dev. 2015; 2
Ng R, Metzger JM, Claflin DR, Faulkner JA. Poloxamer 188 reduces the contraction-induced force decline in lumbrical muscles from mdx mice.
Am J Physiol Cell Physiol. 2008; 295:(1)C146-C150
https://doi.org/10.1152/ajp-cell.00017.2008
Phillips DM, Haut RC. The use of a non-ionic surfactant (P188) to save chondrocytes from necrosis following impact loading of chondral explants. J Orthop Res. 2004; 22:(5)1135-1142
Shelat PB, Plant LD, Wang JC The membraneactive tri-block copolymer pluronic F-68 profoundly rescues rat hippocampal neurons from oxygen-glucose deprivation-induced death through early inhibition of apoptosis.
J Neurosci. 2013; 33:(30)12287-12299
https://doi.org/10.1523%2FJNEUROSCI.5731-12.2013
Mina EW, Lasagna-Reeves C, Glabe CG, Kayed R. Poloxamer 188 copolymer membrane sealant rescues toxicity of amyloid oligomers in vitro.
J Mol Biol. 2009; 391:(3)577-585
https://doi.org/10.1016/j.jmb.2009.06.024
Lee RC, Astumian RD. The physicochemical basis for thermal and non-thermal ‘burn’ injuries. Burns. 1996; 22:(7)509-519
Merchant FA, Holmes WH, Capelli-Schellpfeffer M Poloxamer 188 enhances functional recovery of lethally heat-shocked fibroblasts.
J Surg Res. 1998; 74:(2)131-140
https://doi.org/10.1006/jsre.1997.5252
Birchenough SA, Rodeheaver GT, Morgan RF Topical poloxamer-188 improves blood flow following thermal injury in rat mesenteric microvasculature.
Ann Plast Surg. 2008; 60:(5)584-588
https://doi.org/10.1097/SAP.0b013e3181651661
Baskaran H, Toner M, Yarmush ML, Berthiaume F. Poloxamer-188 improves capillary blood flow and tissue viability in a cutaneous burn wound.
J Surg Res. 2001; 101:(1)56-61
https://doi.org/10.1006/jsre.2001.6262
Firestone MA, Wolf AC, Seifert S. Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers.
Biomacromolecules. 2003; 4:(6)1539-1549
https://doi.org/10.1021/bm034134r
Walsh AM, Mustafi D, Makinen MW, Lee RC. A surfactant copolymer facilitates functional recovery of heat-denatured lysozyme.
Ann N Y Acad Sci. 2005; 1066:321-327
https://doi.org/10.1196/annals.1363.029
Frey SL, Zhang D, Carignano MA Effects of block copolymer's architecture on its association with lipid membranes: experiments and simulations.
J Chem Phys. 2007; 127:(11)
https://doi.org/10.1063/1.2768947
Redhead M, Mantovani G, Nawaz S Relationship between the affinity of PEO-PPO-PEO block copolymers for biological membranes and their cellular effects.
Pharm Res. 2012; 29:(7)1908-1918
https://doi.org/10.1007/s11095-012-0716-6
Cheng CY, Wang JY, Kausik R Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (II) role of hydration dynamics revealed by dynamic nuclear polarization.
Biomacromolecules. 2012; 13:(9)2624-2633
https://doi.org/10.1021/bm300848c
Chin J, Mustafi D, Poellmann MJ, Lee RC. Amphiphilic copolymers reduce aggregation of unfolded lysozyme more effectively than polyethylene glycol.
Phys Biol. 2017; 14:(1)
https://doi.org/10.1088/1478-3975/aa5788
Poellmann MJ, Sosnick TR, Meredith SC, Lee RC. The pentablock amphiphilic copolymer T1107 prevents aggregation of denatured and reduced lysozyme.
Macromol Biosci. 2017; 17:(2)
https://doi.org/10.1002/mabi.201600217
Palmer JS, Cromie WJ, Lee RC. Surfactant administration reduces testicular ischemia-reperfusion injury. J Urol. 1998; 159:(6)2136-2139
Hannig J, Yu J, Beckett M Poloxamine 1107 sealing of radiopermeabilized erythrocyte membranes. Int J Radiat Biol. 1999; 75:(3)379-385
Wang JY, Marks J, Lee KY. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (I) effect of polymer hydrophobicity on its ability to protect liposomes from peroxidation.
Biomacromolecules. 2012; 13:(9)2616-2623
https://doi.org/10.1021/bm300847x
Sandez-Macho I, Casas M, Lage EV Interaction of poloxamine block copolymers with lipid membranes: Role of copolymer structure and membrane cholesterol content.
Colloids Surf B Biointerfaces. 2015; 133:270-277
https://doi.org/10.1016/j.colsurfb.2015.06.019
Schaer GL, Spaccavento LJ, Browne KF Beneficial effects of RheothRx injection in patients receiving thrombolytic therapy for acute myocardial infarction. Results of a randomized, double-blind, placebocontrolled trial. Circulation. 1996; 94:(3)298-307
Quinlan JG, Wong BL, Niemeier RT Poloxamer 188 failed to prevent exercise-induced membrane breakdown in mdx skeletal muscle fibers.
Neuromuscul Disord. 2006; 16:(12)855-864
https://doi.org/10.1016/j.nmd.2006.09.016
Diegelmann RF. Excessive neutrophils characterize chronic pressure ulcers. Wound Repair Regen. 2003; 11:(6)490-495
Yager DR, Nwomeh BC. The proteolytic environment of chronic wounds. Wound Repair Regen. 1999; 7:(6)433-441
Baum CL, Arpey CJ. Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg. 2005; 31:(6)674-686
Barrick B, Campbell EJ, Owen CA. Leukocyte proteinases in wound healing: roles in physiologic and pathologic processes. Wound Repair Regen. 1999; 7:(6)410-422
Nwomeh BC, Yager DR, Cohen IK. Physiology of the chronic wound. Clin Plast Surg. 1998; 25:(3)341-356
Gefen A, Weihs D. Cytoskeleton and plasmamembrane damage resulting from exposure to sustained deformations: A review of the mechanobiology of chronic wounds.
Med Eng Phys. 2016; 38:(9)828-833
https://doi.org/10.1016/j.medengphy.2016.05.014
James TJ, Hughes MA, Cherry GW, Taylor RP. Evidence of oxidative stress in chronic venous ulcers. Wound Repair Regen. 2003; 11:(3)172-176
Chen WY, Rogers AA. Recent insights into the causes of chronic leg ulceration in venous diseases and implications on other types of chronic wounds.
Wound Repair Regen. 2007; 15:(4)434-449
https://doi.org/10.1111/j.1524475X.2007.00250.x
Fujiwara T, Dohi T, Maan ZN Age-associated intracellular superoxide dismutase deficiency potentiates dermal fibroblast dysfunction during wound healing.
Exp Dermatol. 2017;
https://doi.org/10.1111/exd.13404
Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004; 9:283-289
Zölß C, Cech JD. Efficacy of a new multifunctional surfactant-based biomaterial dressing with 1% silver sulphadiazine in chronic wounds.
Int Wound J. 2016; 13:(5)738-743
https://doi.org/10.1111/iwj.12361
Palumbo FP, Harding KG, Abbritti F New surfactant-based dressing product to improve wound closure rates of nonhealing wounds: a European multicenter study including 1036 patients. Wounds. 2016; 28:(7)233-240